If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-4x-36=0
a = 8; b = -4; c = -36;
Δ = b2-4ac
Δ = -42-4·8·(-36)
Δ = 1168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1168}=\sqrt{16*73}=\sqrt{16}*\sqrt{73}=4\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{73}}{2*8}=\frac{4-4\sqrt{73}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{73}}{2*8}=\frac{4+4\sqrt{73}}{16} $
| 7x-2=3(x+4) | | 15=28p+18p | | 2(6-6x)-24=3x+30 | | 18+4y-2=15y-10-2y | | -17+2(1-y)=-5(y-2) | | 1-(2/x)=(20-x)/x^2 | | 2(2-x)-24=3x+54 | | 1b=1.80 | | m(m+2)+(m+3)=23 | | 4(x-5)-8/3=12 | | 60=x*x+8X | | -1a-2a=16 | | 2b-6b=-8 | | 1/3(9x+3)=3x+4 | | 4(x-5)-8=12/3 | | 13/14=v/7 | | 2x+30+4x+2x+30+4x=360 | | (4x+10)/3=-18 | | 3/4(4x+8)=1/2(2x-10) | | 0.087=(0.114*x)+(0.064(1-x)) | | 3^2x+2=27^2 | | (4x+10)/3=18 | | 3^(2x+2)=27^2 | | .3(c-4)=-9 | | N+2n=-3 | | (40-3x)/5=(6x+7)/8 | | 2+(5/2)*2=m | | (x-1)^2-13=3 | | -42n-27-27n=157 | | 0+(5/2)*0=m | | 3x-2(x-1)=x-2(x-1) | | 35+2x=-22+5x |